
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WATERMARKING GRAPH NEURAL NETWORKS VIA
EXPLANATIONS FOR OWNERSHIP PROTECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are the mainstream method to learn pervasive
graph data and are widely deployed in industry, making their intellectual property
valuable. However, protecting GNNs from unauthorized use remains a challenge.
Watermarking, which embeds ownership information into a model, is a poten-
tial solution. However, existing watermarking methods have two key limitations:
First, almost all of them focus on non-graph data, with watermarking GNNs for
complex graph data largely unexplored. Second, the de facto backdoor-based wa-
termarking methods pollute training data and induce ownership ambiguity through
intentional misclassification. Our explanation-based watermarking inherits the
strengths of backdoor-based methods (e.g., robust to watermark removal attacks),
but avoids data pollution and eliminates intentional misclassification. In particu-
lar, our method learns to embed the watermark in GNN explanations such that this
unique watermark is statistically distinct from other potential solutions, and own-
ership claims must show statistical significance to be verified. We theoretically
prove that, even with full knowledge of our method, locating the watermark is an
NP-hard problem. Empirically, our method manifests robustness to removal at-
tacks like fine-tuning and pruning. By addressing these challenges, our approach
marks a significant advancement in protecting GNN intellectual property.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017; Hamilton et al.,
2018; Veličković et al., 2018) are widely used for tasks involving pervasive graph-structured data,
such as social network analysis, bioinformatics, and recommendation systems (Zhang et al., 2021;
Zhou et al., 2020). Various giant companies have integrated GNNs into their systems or open-
sourced their GNN frameworks: Amazon uses GNNs to analyze user behavior patterns for product
recommendation (Virinchi, 2022); Google develops TensorflowGNN (Sibon Li et al., 2021) for real-
time traffic prediction in Google Maps (Oliver Lange, 2020); Meta uses GNNs to improve friend and
content recommendations on Facebook and Instagram (MetaAI, 2023); and Alibaba open-sources
the AliGraph (Yang, 2019) platform and uses GNNs for fraud detection (Liu et al., 2021b) and risk
prediction (Li, 2019). Given these companies’ huge investment in labor, time, and resources to
develop and deploy GNNs, it is crucial for them to be able to verify the ownership of their own
models to protect against illegal copying, model theft, and malicious distribution.

Watermarking, an ownership verification technique, embeds a secret pattern into a model (Uchida
et al., 2017) so that if it is stolen or misused, ownership can still be proven through the retained
watermark. Among the watermarking strategies (see Section 2), backdoor-based watermarking is the
de facto approach, especially for non-graph data (Adi et al., 2018; Bansal et al., 2022; Lv et al., 2023;
Yan et al., 2023; Li et al., 2022; Shao et al., 2022; Lansari et al., 2023). In these methods, a backdoor
trigger (e.g., a logo) is inserted as the watermark pattern into some clean samples (e.g., images)
with a target label different from the true label, and the model is trained on both the watermarked
and clean samples. During verification, ownership is proven by demonstrating that samples with
the backdoor trigger consistently produce the target label. Backdoor-based watermarking methods
have several merits: they are robust to removal attacks such as model pruning and fine-tuning, and
ownership verification only requires black-box access to the target model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, recent works (Yan et al., 2023; Liu et al., 2024) show backdoor-based watermarking meth-
ods – which are primarily developed for non-graph data – have a fundamental limitation: they in-
duce ownership ambiguity, as attackers could falsely claim misclassified data as ownership evidence.
Note that this security issue also exists in the few backdoor-based watermarking methods designed
for graph data (Xu et al., 2023). Further, they purposely manipulate the normal model training with
polluted data samples, which could cause security issues like data poisoning attacks.

Recognizing these limitations, researchers have explored alternate spaces for embedding water-
marks. For example, (Shao et al., 2024) embed watermarks into explanations of DNN predictions,
avoiding tampering with model predictions or parameters. While (Shao et al., 2024) offers com-
pelling benefits, such as eliminating data pollution risks, their approach assumes a ground-truth
watermark is known. This requirement introduces challenges, such as reliance on trusted third par-
ties and potential disputes over the true watermark. Moreover, (Shao et al., 2024) do not address the
unique complexities of graph data, including structural dependencies and multi-hop relationships.

Motivated by these insights, we extend explanation-based watermarking to GNNs, addressing the
challenges specific to graph data while avoiding reliance on ground-truth watermark verification.
Our approach aligns explanations of selected subgraphs with a predefined watermark, ensuring ro-
bustness to removal attacks and preserving the advantages of explanation-based methods. In doing
so, we present the first explanation-based watermarking method tailored to GNNs.

Our approach: We develop a novel watermarking strategy for protecting GNN model ownership
that both inherits the merits from and mitigates the drawbacks of backdoor-based watermarking.
Like backdoor-based methods, our approach only needs black-box model access. However, in con-
trast to using predictions on the polluted watermarked samples, we leverage the explanations of
GNN predictions on clean samples and align them with a predefined watermark for ownership veri-
fication. Designing this explanation-based watermarking presents several challenges: First, how do
we optimize the GNN training such that these explanations effectively align with the watermark?
Second, how do we guarantee that this alignment provides unique proof of ownership (to eliminate
ownership ambiguity)? Third, is the embedded watermark pattern robust to removal attacks? And
fourth, is the ownership evidence undetectable to adversaries?

Addressing these challenges requires careful design. Prior to training, the owner selects a secret set
of watermarked subgraphs (private) and defines a watermark pattern (possibly private).1 The GNN
is trained with a dual-objective loss function that minimizes (1) standard classification loss, and (2)
distance between the watermark and the explanation of each watermarked subgraph. Our method,
like GraphLIME (Huang et al., 2023), uses Gaussian kernel matrices to approximate the influence
of node features on GNN predictions. However, instead of GraphLIME’s iterative approach, we
employ ridge regression to compute feature attribution vectors in a single step, providing a more
efficient, closed-form solution.

Our approach is (i) Effective: We observe that explanations of watermarked subgraphs exhibit high
similarity to the watermark after training. (ii) Unique: This similarity across explanations is sta-
tistically unlikely to be seen in the absence of watermarking, and hence serves as our ownership
evidence. (iii) Undetectable: We prove that, even with full knowledge of our watermarking method,
it is computationally intractable (NP-hard) for adversaries to find the private watermarked subgraphs.
(iv) Robust: Through empirical evaluations on multiple benchmark graph datasets and GNN mod-
els, our method shows robustness to fine-tuning and pruning-based watermark removal attacks. We
summarize our contributions as follows:

• We introduce the first known method for watermarking GNNs via their explanations, avoiding data
pollution and ownership ambiguity pitfalls in state-of-the-art black-box watermarking schemes.

• We prove that it is NP-hard for the worst-case adversary to identify our watermarking mechanism.

• We show our method is robust to watermark removal attacks like fine-tuning and pruning.

2 RELATED WORK

Watermarking techniques can be generally grouped into white-box and black-box methods.

1Ownership verification does not use the watermark itself, and will work regardless of whether it is known.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

White-Box Watermarking. This type of watermarking technique (Darvish Rouhani et al., 2019;
Uchida et al., 2017; Wang & Kerschbaum, 2020; Shafieinejad et al., 2021) directly embeds water-
marks into the model parameters or features during training. For example, Uchida et al. (2017) pro-
pose embedding a watermark in the target model via a regularization term, while Darvish Rouhani
et al. (2019) proposed embedding the watermark into the activation/feature maps. Although these
methods are robust in theory (Chen et al., 2022), they require full access to the model parame-
ters during verification, which may not be feasible in real-world scenarios, especially for deployed
models operating in black-box environments (e.g., APIs).

Black-Box Watermarking. Black-box approaches verify model ownership using only model pre-
dictions (Adi et al., 2018; Chen et al., 2018; Szyller et al., 2021; Le Merrer et al., 2019). They often
use backdoor-based methods, training models to output specific predictions for “trigger” inputs; this
owner-specified output can serve as ownership evidence (Adi et al., 2018; Zhang et al., 2018). These
methods have significant downsides. First, purposeful data pollution and model manipulation can
cause security issues like data poisoning attacks (Steinhardt et al., 2017; Zhang et al., 2019). Fur-
ther, backdoor-based methods suffer from ambiguity — since they rely on misclassification, attack-
ers may claim naturally-misclassified samples as their own “watermark”(Yan et al., 2023; Liu et al.,
2024). Noting these issues with backdoor-based methods, Shao et al. (2024) proposed using expla-
nations as the embedding space for DNN watermarks. This avoids modifying model predictions or
parameters, eliminates data pollution risks, and retains compatibility with black-box querying.

Watermarking GNNs. There are unique challenges to watermark GNNs—graphs vary widely in
size and structure, making it difficult to embed a watermark that can be applied uniformly across
different graphs. Moreover, the multi-hop message-passing mechanisms in GNNs are more sensitive
to changes in data than other neural networks that process more uniform data, such as images or
text (Wang & Gong, 2019; Zügner et al., 2020; Zhou et al., 2023). The only existing black-box
method for watermarking GNNs (Xu et al., 2023) is backdoor-based, and suffers from the same
data pollution and ownership ambiguity issues as backdoor watermarking of non-graph models (Liu
et al., 2024)2. These issues, coupled with the complexity of graphs, make existing watermarking
techniques unsuitable for GNNs. This highlights the need for novel watermarking approaches.

3 BACKGROUND AND PROBLEM FORMULATION

3.1 GNNS FOR NODE CLASSIFICATION

Let a graph be denoted as 𝐺 = (V, E,X), where V is the set of nodes, E is the set of edges, and
X = [x1, · · · , x𝑁] ∈ R𝑁×𝐹 is the node feature matrix. 𝑁 = |V| is the number of nodes, 𝐹 is
the number of features per node, and x𝑢 ∈ R𝐹 is the node 𝑢’s feature vector. We assume the task
of interest is node classification. In this context, each node 𝑣 ∈ V has a label 𝑦𝑣 from a label set
C = {1, 2, · · · , 𝐶}, and we have a set of |V 𝑡𝑟 | labeled nodes (V 𝑡𝑟 , y𝑡𝑟) = {(𝑣𝑡𝑟𝑢 , 𝑦𝑡𝑟𝑢)}𝑢∈V𝑡𝑟 ⊂ V×C
nodes as the training set. A GNN for node classification takes as input the graph 𝐺 and training nodes
V 𝑡𝑟 , and learns a node classifier, denoted as 𝑓 , that predicts the label 𝑦𝑣 for each node 𝑣. Suppose
a GNN has 𝐿 layers and a node 𝑣’s representation in the 𝑙-th layer is h(𝑙)𝑣 , where h(0)𝑣 = x𝑣 . Then it
updates 𝒉 (𝑙)𝑣 for each node 𝑣 using the following two operations:

𝒍 (𝑙)𝑣 = Agg
({
𝒉 (𝑙−1)𝑢 : 𝑢 ∈ N (𝑣)

})
, 𝒉 (𝑙)𝑣 = Comb

(
𝒉 (𝑙−1)𝑣 , 𝒍 (𝑙)𝑣

)
, (1)

where Agg iteratively aggregates the representations of all neighbors of a node, and Comb updates
the node’s representation by combining it with the aggregated neighbors’ representations. N(𝑣)
denotes the neighbors of 𝑣. Different GNNs use different Agg and Comb operations.

The last-layer representation h(𝐿)𝑣 ∈ R | C | of the training nodes 𝑣 ∈ V 𝑡𝑟 are used for training the node
classifier 𝑓 . Let Θ be the model parameters and 𝑣’s softmax/confidence scores be p𝑣 = 𝑓Θ (V 𝑡𝑟)𝑣 =

softmax(h(𝐿)𝑣), where 𝑝𝑣,𝑐 indicates the probability of node 𝑣 being class 𝑐. Then, Θ are learned by

2A recent method, GrOVe (Waheed et al., 2024), is a “fingerprinting” method, verifying ownership of GNNs
through node embeddings rather than explicit watermark patterns. However, its authors note it is vulnerable
against model pruning attacks. In general, relying on intrinsic model features limits guarantees of uniqueness
and can introduce ownership ambiguity (Wang et al., 2021; Liu et al., 2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

minimizing a classification (e.g., cross-entropy) loss on the training nodes:

Θ∗ = argmin
Θ
L𝐶𝐸 (y𝑡𝑟 , 𝑓Θ (V 𝑡𝑟)) = −Σ𝑣∈V𝑡𝑟 ln 𝑝𝑣,𝑦𝑣 . (2)

3.2 GNN EXPLANATION

GNN explanations reveal how a GNN makes decisions by identifying graph features that most influ-
ence the prediction. Some methods (e.g., GNNExplainer (Ying et al., 2019) and PGExplainer (Luo
et al., 2020)) identify important subgraphs, while others (e.g., GraphLime (Huang et al., 2023))
identify key node features. Inspired by GraphLime (Huang et al., 2023), we use Gaussian kernel
matrices to capture relationships between node features and predictions: Gaussian kernel matrices
are adept at capturing nonlinear dependencies and complex relationships between variables, ensur-
ing that subtle patterns in the data are effectively represented Yamada et al. (2012). Using these
Gaussian kernel matrices, we employ a closed-form solution with ridge regression (Hoerl & Ken-
nard, 1970), allowing us to compute feature importance in a single step.

Our function 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(·) takes node feature matrix X and nodes’ softmax scores P = [p1, · · · , p𝑁],
and produces a 𝐹-dimensional feature attribution vector e, where each entry indicates the positive
or negative feature influence on the GNN’s predictions across all nodes.

e = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X,P) = (K̃𝑇 K̃ + 𝜆I𝐹)−1K̃𝑇 L̃ (3)

This equation computes feature attributions (e) by leveraging the relationships between input fea-
tures (X) and output predictions (P) through Gaussian kernel matrices.

We defer precise mathematical definitions to Appendix Section A.2. For high-level understanding,
the matrix K̃, of size 𝑁2 × 𝐹, encodes pairwise similarities between nodes based on their features,
computed using a Gaussian kernel. Similarly, L̃, of size 𝑁2 × 1, uses a Gaussian kernel to encode
pairwise similarities between nodes based on their predictions. The term (K̃𝑇 K̃+𝜆I𝐹)−1, where 𝜆 is a
regularization hyperparameter and I𝐹 is the 𝐹 ×𝐹 identity matrix, solves a ridge regression problem
to ensure a stable and interpretable solution. The product K̃𝑇 L̃, of size 𝐹 × 1, ties the Gaussian
feature similarities (K̃) to the output prediction similarities (L̃), ultimately yielding the vector e, of
size 𝐹 × 1, which quantifies the importance of each input feature for the GNN’s predictions.

In this paper, the explanation of a GNN’s node predictions means this feature attribution vector e.

3.3 PROBLEM FORMULATION

We design an explanation-based watermarking method to protect GNN ownership. This involves
defining a watermark pattern (a vector w) and selecting a set of watermarked subgraphs from 𝐺.
Our approach trains a GNN 𝑓 to embed the relationship between w and the watermarked subgraphs,
enabling the explanations of these subgraphs to serve as verifiable model ownership evidence.

Threat Model: There are three parties: the model owner, the adversary, and the third-party model
ownership verifier. Obviously, the model owner has white-box access to the target GNN model.
• Adversary: We investigate an adversary who dishonestly claims ownership of the GNN model 𝑓 .

We primarily assume the adversary does not have direct knowledge of the watermarked subgraphs
in 𝐺. To evaluate the robustness of our method, we allow that the adversary might know other
details, such as the shape and number of watermarked subgraphs, or the watermark itself. The
adversary seeks to undermine the watermarking scheme by (1) attempting to find the watermarked
subgraphs (or similarly-convincing alternatives), or (2) implementing a watermark removal attack.

• Model Ownership Verifier: Following existing backdoor-based watermarking, we use black-box
ownership verification, where the verifier does not need full access to the protected model.

Objectives: Our explanation-based watermarking method aims to achieve the below objectives:
1. Effectiveness. Training must embed the watermark in the explanations of our selected

subgraphs: their feature attribution vectors must be sufficiently3 aligned with vector w.

3Note: alignment between explanations and w is a tool for the owner to measure optimization success; for
a watermark to function as ownership evidence, alignment must simply be “good enough” (See Section 5.2.1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Overview of our explanation-based GNN watermarking method. During embedding, 𝑓

is optimized to (1) minimize node classification loss and (2) align explanations of watermarked
subgraphs with w. During ownership verification, the similarity of 𝐺𝑐𝑑𝑡 ’s binarized explanations,
{ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1, is tested for significance. In this example, 𝐺𝑐𝑑𝑡 are not the watermarked subgraphs; as a
result, {ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 fail to exhibit significant similarity and are rejected.

2. Uniqueness. Aligning watermarked subgraph explanations with w must yield statistically-
significant similarity between explanations that is unlikely to occur in alternate solutions.

3. Robustness. The watermark must be robust to removal attacks like fine-tuning and pruning.
4. Undetectability. Non-owners should be unable to locate the watermarked explanations.

4 METHODOLOGY

Our watermarking method occurs in three stages: (1) design, (2) embedding, and (3) ownership ver-
ification. Since design relies on embedding and ownership verification requirements, we introduce
stages (2) and (3) beforehand. Training 𝑓 involves a dual-objective loss function balancing node
classification and watermark embedding. Minimizing watermark loss reduces the misalignment be-
tween w and the explanations of 𝑓 ’s predictions on the watermarked subgraphs, embedding the wa-
termark. During ownership verification, explanations are tested for statistically-significant similarity
due to their common alignment with w. Lastly, we detail watermark design principles, which ensure
the similarity observed across our explanations is statistically-significant, unambiguous ownership
evidence. Figure 1 gives an overview of our explanation-based watermarking method.

4.1 WATERMARK EMBEDDING

Let training setV 𝑡𝑟 be split as two disjoint subsets: V𝑐𝑙 𝑓 for node classification andV𝑤𝑚𝑘 for wa-
termarking. Select 𝑇 subgraphs {𝐺𝑤𝑚𝑘

1 , . . . , 𝐺𝑤𝑚𝑘
𝑇
} whose nodes {V𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1 will be watermarked.

These subgraphs have explanations {e𝑤𝑚𝑘
1 , . . . , e𝑤𝑚𝑘

𝑇
}, where e𝑤𝑚𝑘

𝑖
= 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑤𝑚𝑘

𝑖 ,P𝑤𝑚𝑘
𝑖
) ex-

plains 𝑓 ’s softmax output P𝑤𝑚𝑘
𝑖

on 𝐺𝑤𝑚𝑘
𝑖

’s nodes V𝑤𝑚𝑘
𝑖

, which have features X𝑤𝑚𝑘
𝑖 . Define wa-

termark w as an 𝑀-dimensional vector (𝑀 ≤ 𝐹), whose entries are 1s and −1s.

Inspired by Shao et al. (2024), we use multi-objective optimization to balance classification perfor-
mance with a hinge-like watermark loss function. When minimized, the watermark loss encourages
alignment between w and {e𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1, embedding the relationship between w and these subgraphs.

L𝑤𝑚𝑘 ({e𝑤𝑚𝑘
𝑖 }𝑇𝑖=1,w) =

𝑇∑︁
𝑖=1

𝑀∑︁
𝑗=1

max(0, 𝜖 − w[𝑗] · e𝑤𝑚𝑘
𝑖 [idx[𝑗]]), (4)

where e𝑤𝑚𝑘
𝑖
[idx] represents the watermarked portion of e𝑤𝑚𝑘

𝑖
on node feature indices idx with

length 𝑀; idx is same for all explanations {e𝑤𝑚𝑘
𝑖
}𝑇
𝑖=1. We emphasize that idx are not arbitrary, but

are rather the result of design choices discussed later in Section 4.3. The hyperparameter 𝜖 bounds
the contribution of each multiplied pair w[𝑗] · e𝑤𝑚𝑘

𝑖
[idx[𝑗]] to the summation.

We train the GNN model 𝑓 to minimize both classification loss on the nodesV𝑐𝑙 𝑓 (see Equation 2)
and watermark loss on the explanations of {𝐺𝑤𝑚𝑘

1 , . . . , 𝐺𝑤𝑚𝑘
𝑇
}, with a balancing hyperparameter 𝑟:

min
Θ
L𝐶𝐸 (y𝑐𝑙 𝑓 , 𝑓Θ (V𝑐𝑙 𝑓)) + 𝑟 · L𝑤𝑚𝑘 ({e𝑤𝑚𝑘

𝑖 }𝑇𝑖=1,w) (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

After training, we expect the learned parameters Θ to ensure not only an accurate node classifier, but
also similarity between w and explanations {e𝑤𝑚𝑘

𝑖
}𝑇
𝑖=1 at indices idx.

Algorithm 1 (in Appendix) provides a detailed description.

4.2 OWNERSHIP VERIFICATION

Since they were aligned with the same w, explanations {e𝑐𝑑𝑡
𝑖
}𝑇
𝑖=1 will be similar to each other after

training. Therefore, when presented with 𝑇 candidate subgraphs {e𝑐𝑑𝑡1 , e𝑐𝑑𝑡2 , · · · , e𝑐𝑑𝑡
𝑇
} by a pur-

ported owner (note that our threat model assumes a strong adversary who also knows 𝑇), we must
measure the similarity between these explanations to verify ownership. If the similarity is statis-
tically significant at a certain level, we can conclude the purported owner knows which subgraphs
were watermarked during training, and therefore that they are the true owner.

Explanation Matching: Our GNN explainer in Equation (3) produces a positive or negative score
for each node feature, indicating its influence on the GNN’s predictions, generalized across all nodes
in the graph. To easily compare these values across candidate explanations, we first binarize them
with the sign function. For the 𝑗 𝑡ℎ index of an explanation e𝑐𝑑𝑡

𝑖
, this process is defined as:

ê𝑐𝑑𝑡𝑖 [𝑗] =

1 if e𝑐𝑑𝑡

𝑖
[𝑗] > 0

−1 if e𝑐𝑑𝑡
𝑖
[𝑗] < 0

0 otherwise
(6)

We then count the matching indices (MI) across all the binarized explanations — the number of
indices at which all binarized explanations have matching, non-zero values:4

MI𝑐𝑑𝑡 = MI({ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1) = Σ𝐹
𝑗=1𝟙(({ê𝑐𝑑𝑡𝑖 [𝑗] ≠ 0, ∀𝑖}) ∧ (ê𝑐𝑑𝑡1 [𝑗] = ê𝑐𝑑𝑡2 [𝑗] = · · · = ê𝑐𝑑𝑡𝑇 [𝑗])) (7)

Approximating a Baseline MI Distribution: To test the significance of MI𝑐𝑑𝑡 , we need to approxi-
mate the distribution of naturally-occurring matches: the MIs for all 𝑇-sized sets of un-watermarked
explanations. We perform 𝐼 (which should be sufficiently large; 𝐼 = 1000 in our experiments) simu-
lations by randomly sampling sets of 𝑇 subgraphs from the training graph, and obtaining the MI of
the binarized explanations of each set of the subgraphs. Then, we can obtain empirical estimates of
mean and standard deviation, 𝜇𝑛𝑎𝑡𝑒 and 𝜎𝑛𝑎𝑡𝑒 (note the subscript “e”), for these 𝐼 MIs.

Significance Testing to Verify Ownership: We verify the purported owner’s ownership by testing
if MI𝑐𝑑𝑡 is statistically unlikely for randomly selected subgraphs, at some significance level 𝛼𝑣:

𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 =

{
𝑇𝑟𝑢𝑒 if 𝑝𝑧𝑡𝑒𝑠𝑡 < 𝛼𝑣

𝐹𝑎𝑙𝑠𝑒 otherwise
where 𝑧𝑡𝑒𝑠𝑡 =

MI𝑐𝑑𝑡 − 𝜇𝑛𝑎𝑡𝑒

𝜎𝑛𝑎𝑡𝑒

(8)

Algorithm 2 (in Appendix) provides a detailed description of the ownership verification process.

4.3 WATERMARK DESIGN

The watermark w is an 𝑀-dimensional vector with entries of 1 and −1. The size and location of w
must allow us to effectively embed unique ownership evidence into our GNN.

Design Goal: The watermark should be designed to yield a target MI (MI𝑡𝑔𝑡) that passes the statisti-
cal test in Equation (8). This value is essentially the upper bound on a one-sided confidence interval.
However, since we cannot obtain the estimates 𝜇𝑛𝑎𝑡𝑒 or 𝜎𝑛𝑎𝑡𝑒 without a trained model, we instead
use a binomial distribution to predict estimates 𝜇𝑛𝑎𝑡𝑝 and 𝜎𝑛𝑎𝑡𝑝 (note the subscript “p”).

We assume the random case, where a binarized explanation includes values −1 or 1 with equal
probability (again, ignoring zeros; see Footnote 4). Across 𝑇 binarized explanations, the probability
of a match at an index is 𝑝𝑚𝑎𝑡𝑐ℎ = 2 × 0.5𝑇 . We estimate 𝜇𝑛𝑎𝑡𝑝 = 𝐹 × 𝑝𝑚𝑎𝑡𝑐ℎ (where 𝐹 is number
of node features), and 𝜎𝑛𝑎𝑡𝑝 =

√︁
𝐹 × 𝑝𝑚𝑎𝑡𝑐ℎ (1 − 𝑝𝑚𝑎𝑡𝑐ℎ). We therefore define MI𝑡𝑔𝑡 as follows:

MI𝑡𝑔𝑡 = 𝑚𝑖𝑛(𝜇𝑛𝑎𝑡𝑝 + 𝜎𝑛𝑎𝑡𝑝 × 𝑧𝑡𝑔𝑡 , 𝐹), (9)

4We exclude 0s from our count of MI because a 0 in the explanation corresponds to 0 dependence between
a node feature and the GNN’s prediction, and it is highly unlikely for the optimization process to achieve this
level of precision unless the explanation index corresponds to a node feature with zero value. Therefore, we
conclude all 0’s must reflect naturally occurring zeros in X and are irrelevant to measurements of watermarking.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where 𝑧𝑡𝑔𝑡 is the 𝑧-score associated with target significance 𝛼𝑡𝑔𝑡 . In practice, we set 𝛼𝑡𝑔𝑡 = 1𝑒 − 5;
since MI𝑡𝑔𝑡 affects watermark design, we want to ensure it does not underestimate the upper bound.

However, two questions remain: 1) What watermark size 𝑀 will allow us to reach an MI𝑡𝑔𝑡 , and 2)
which indices idx should be watermarked with these 𝑀 values?

Watermark Length 𝑀: For 𝑇 binarized explanations, our estimated lower bound of baseline MI is:

MI𝐿𝐵 = 𝑚𝑎𝑥(𝜇𝑛𝑎𝑡𝑝 − 𝜎𝑛𝑎𝑡𝑝 × 𝑧𝐿𝐵, 0), (10)

where 𝑧𝐿𝐵 is the 𝑧-score for target significance, 𝛼𝐿𝐵 — in practice, 𝛼𝐿𝐵 equals 𝛼𝑡𝑔𝑡 (1𝑒 − 5).

We expect that at most, our watermark needs to add (MI𝑡𝑔𝑡−MI𝐿𝐵) net MI. However, if some indices
in the 𝑇 binarized explanations already match naturally, the watermark may not add additional net
matches. We pad the watermark length to reflect this, so the number of watermarked indices does not
fail to contribute a sufficient number of new MI. We calculate the padding based on the probability of
a match existing naturally without watermarking. In the most challenging scenario, where MI𝑡𝑔𝑡 MI
occurs naturally, the probability of a watermarked index producing a new match is (𝐹 −MI𝑡𝑔𝑡)/𝐹.
Consequently, we pad the required 𝑀 by the inverse of this probability, 𝐹/(𝐹 −MI𝑡𝑔𝑡):

𝑀 = ⌈(MI𝑡𝑔𝑡 −MI𝐿𝐵) × 𝐹/(𝐹 −MI𝑡𝑔𝑡)⌉ (11)

Using watermark length 𝑀 should yield enough net MI to reach the total, MI𝑡𝑔𝑡 , that the owner will
need to demonstrate ownership. Notice that, under the assumption that we set 𝛼𝐿𝐵 equal to 𝛼𝑡𝑔𝑡 ,
Equation (11) is ultimately a function of three variables: 𝛼𝑡𝑔𝑡 , 𝐹, and 𝑇 .

Watermark Location idx: Each explanation corresponds to node feature indices. It is easiest to
watermark indices where features are non-zero. We advise selecting idx from the 𝑀 most frequently
non-zero node features across all 𝑇 watermarked subgraphs. Let X𝑤𝑚𝑘 = [X𝑤𝑚𝑘

1 ;X𝑤𝑚𝑘
2 ; · · ·X𝑤𝑚𝑘

𝑇
]

be the concatenation of node features of the 𝑇 watermarked subgraphs. Then, we define idx as:

idx = top𝑀

({
∥x𝑤𝑚𝑘

1 ∥0, ∥x𝑤𝑚𝑘
2 ∥0, · · · , ∥x𝑤𝑚𝑘

𝐹 ∥0
})

, (12)

where x𝑤𝑚𝑘
𝑗

is the 𝑗-th column of X𝑤𝑚𝑘 , ∥ · ∥0 represents the number of non-zero entries in a vector,
and top𝑀 (·) returns the indices of the 𝑀 largest values.

4.4 LOCATING THE WATERMARKED SUBGRAPHS

An adversary may search for the watermarked subgraphs to falsely claim ownership. In the worst
case, they will have access to 𝐺𝑡𝑟 and know both the number of watermarked subgraphs 𝑇 , and the
node size 𝑠 of each subgraph. With 𝐺𝑡𝑟 , the adversary can compute the distribution (𝜇𝑛𝑎𝑡𝑒 , 𝜎𝑛𝑎𝑡𝑒)
of naturally-occurring matches, and then search for 𝑇 subgraphs whose binarized explanations have
maximally-significant MI. They can do this in two ways: a brute-force search or a random search.

Brute-Force Search: If the training graph has 𝑁 nodes, identifying 𝑛𝑠𝑢𝑏 = 𝑠𝑁-node subgraphs
yields

(𝑁
𝑛𝑠𝑢𝑏

)
options. To find the 𝑇 subgraphs with a maximum MI across their binarized explana-

tions, an adversary must compare all 𝑇-sized sets of these subgraphs, with
((𝑁

𝑛𝑠𝑢𝑏
)

𝑇

)
sets in total.

Random Search: Alternatively, an adversary can randomly sample subgraphs in the hopes of find-
ing a group that is “good enough”. To do this, they make 𝑇 random selections of an 𝑛𝑠𝑢𝑏-sized set of
nodes, each of which comprises a subgraph. Given 𝑁 training nodes and 𝑇 watermarked subgraphs
of size 𝑛𝑠𝑢𝑏, the probability that an attacker-chosen subgraph of size 𝑛𝑠𝑢𝑏 overlaps with any single
watermarked subgraph with no less than 𝑗 nodes is given as:

𝑃(at least 𝑗 overlapping nodes) = 1 −
(

𝑗∑︁
𝑚=1

(
𝑛𝑠𝑢𝑏

𝑚

) (
𝑁 − 𝑛𝑠𝑢𝑏
𝑛sub − 𝑚

)/(
𝑁

𝑛sub

))𝑇
(13)

The summation represents the probability that a randomly selected subgraph contains less than 𝑗

nodes from a watermarked subgraph. Raising this to the power of 𝑇 yields the probability that
overlap < 𝑗 for all watermarked subgraphs. Subtracting this from 1 yields the probability that the
randomly selected subgraph contains at least 𝑗 nodes from the same watermarked subgraph.

In Section 5.2.3 we demonstrate the infeasibility of both brute-force and random search.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset GCN SGC SAGE

Accuracy (Trn/Tst)
no wmk | wmk

Wmk
Alignmt

MI
𝑝-val

Accuracy (Trn/Tst)
no wmk | wmk

Wmk
Alignmt

MI
𝑝-val

Accuracy (Trn/Tst)
no wmk | wmk

Wmk
Alignmt

MI
𝑝-val

Photo 91.3/89.4| 90.9/88.3 91.4 <0.001 91.4/89.9| 90.1/88.0 91.8 <0.001 94.2/90.8| 94.1/88.2 97.7 <0.001
PubMed 88.6/85.8| 85.7/81.4 91.5 <0.001 88.8/85.9| 85.3/81.4 88.9 <0.001 90.5/86.0| 91.1/81.2 85.2 <0.001
CS 98.5/90.3| 96.8/89.8 73.8 <0.001 98.4/90.3| 96.7/90.1 74.5 <0.001 100./88.4| 99.9/88.9 78.2 <0.001

Table 1: Watermarking results. Each value is the average of five trials with distinct random seeds.
Subscripts w and n indicate results from training with and without the watermark, respectively.

5 EXPERIMENTS

5.1 SETUP

Datasets and Training/Testing Sets: We evaluate our watermarking method on three standard
datasets commonly used in node classification tasks: Amazon Photo — a subset of the Amazon co-
purchase network (McAuley et al., 2015), CoAuthor CS — a coauthorship network (Shchur et al.,
2019), and PubMed — a citation network (Yang et al., 2016). (See Appendix A.1 for more details.)

The graph is split into three sets: 60% nodes for training, 20% for testing, and the remaining 20%
for further training tasks, such as fine-tuning or other robustness evaluations. As mentioned in
Section 4.1, training nodes are further split into two disjoint sets: one for training the GNN classifier,
and one consisting of the watermarked subgraphs. (Their relative sizes are determined by the size
and number of watermarked subgraphs, which are hyperparameters mentioned below.) The test set
is used to evaluate classification performance after training. The remaining set enables additional
training of the pre-trained GNN on unseen data to assess watermark robustness.

GNN Models and Hyperparameters: We apply our watermarking method to three GNN models:
GCN Kipf & Welling (2017), SGC (Wu et al., 2019), and GraphSAGE (Hamilton et al., 2018). Our
main results use the GraphSAGE architecture by default. Unless otherwise specified, we use 𝑇 = 4
watermarked subgraphs, each with the size 𝑠 = 0.5% of the training nodes. Key hyperparameters in
our watermarking method, including the significance levels (𝛼𝑡𝑔𝑡 and 𝛼𝑣), balanced hyperparameter
(𝑟), and watermark loss contribution bound (𝜖), were tuned to balance classification and watermark
losses. A list of all hyperparameter values are in the Appendix. Note that our watermark design in
Equation (11) allows us to learn the watermark length 𝑀 .

5.2 RESULTS

As stated in Section 3.3, successful watermark should exhibit effectiveness, uniqueness, robustness,
and undetectability. Our experiments aim to assess each of these. More results see Appendix.

5.2.1 EFFECTIVENESS AND UNIQUENESS

Embedding effectiveness can be measured by the alignment of the binarized explanations with the
watermark pattern w at indices idx; this metric can be used by the owner to confirm that w was
effectively embedded in 𝑓 during training. Since the entries of w are 1s and −1s, we simply count
the average number of watermarked indices at which a binarized explanation matches w:

𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = (1/𝑇) × Σ𝑇
𝑖=1Σ

𝑀
𝑗=1𝟙(ê

𝑤𝑚𝑘
𝑖 [idx[𝑗]] = w[𝑗]) (14)

Watermarking uniqueness is measured by the MI 𝑝-value for the binarized explanations of the 𝑇

watermarked subgraphs, as defined by Equation (8). A low 𝑝-value indicates that the MI of the
watermarked explanations is statistically unlikely to observed in explanations of randomly selected
subgraphs. This metric is more important than watermark alignment; as long as the watermarked
subgraphs yield a uniquely large MI, it is sufficient, even if alignment is under 100%.

Table 1 shows results under the default setting, averaged over five trials with distinct random seeds
and watermark patterns. It highlights our method’s effectiveness, uniqueness, and classification
performance. The key result is the MI 𝑝-value, which shows uniqueness of the ownership claim;
this remains below 0.001 in all cases where 𝑇 > 2, even when watermark alignment is below 100%.
Accuracy remains high across datasets and models, showing minimal impact from watermarking.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: Effect of pruning (left) and fine-tuning (right) on MI 𝑝-value. These results reflect our de-
fault architecture (GraphSAGE), number of subgraphs (𝑇), and subgraph size (𝑠). See Appendix for
results for varied architectures, 𝑇 , 𝑠, and learning rates (Figures 6- 9, 10, 11, and 12, respectively.)

Figure 3: The probability that a randomly-chosen subgraph overlaps with a watermarked subgraph.

5.2.2 ROBUSTNESS

A good watermark will be robust to removal attacks. We explore two types of attacks. The first is
pruning for model compression (Li et al., 2016), as used to assess watermark robustness by Liu et al.
(2021a), Tekgul et al. (2021), and others. The second is fine-tuning Pan & Yang (2010), as used for
robustness assessment by Adi et al. (2018), Wang et al. (2020), and more.

Pruning: Pruning is a model compression strategy that sets a portion of weights to zero (Li et al.,
2016). The particular approach we explore, structured pruning, targets rows and columns of para-
mater tensors — such as node embeddings and edge features — based on their importance scores,
or 𝐿𝑛-norms (Paszke et al., 2019). An attacker hopes that by pruning the model, they may remove
the watermark while still maintaining high classification accuracy.

Fine-Tuning: Fine-tuning is a technique that continues training on previously trained models to
adapt to a new task (Pan & Yang, 2010). An attacker may use fine-tuning to get the GNN to “forget”
the watermark. To test our model’s robustness to this type of attack, we continue training the model
on the validation dataset, 𝐺𝑣𝑎𝑙 ,at 0.1 times the original learning rate for 49 epochs. (See Appendix
Section A.5 for results with other learning rates and GNN architectures.)

Figure 2 shows the impact of pruning and fine-tuning attacks. The left shows the impact of pruning
rates 0.0 (no GNN parameters pruned) to 1.0 (all pruned). In all datasets, the MI 𝑝-value only rises
as classification accuracy drops, meaning the owner would notice before the pruning affects the
watermark. The right shows classification accuracy and MI 𝑝-value in a fine-tuning attack. CS has a
near-zero MI 𝑝-value for about 25 epochs, whereas Photo and PubMed have low MI 𝑝-values for the
full duration. This demonstrates the watermark’s robustness for extended periods during fine-tuning.

5.2.3 UNDETECTABILITY

Brute-Force Search: With Equations from Section 4.4, we use our smallest datset, Amazon Photo
(4590 training nodes), to demonstrate the infeasibility of a brute-force search for the watermarked
subgraphs. We assume adversaries know the number (𝑇) and size (𝑠) of our watermarked subgraphs.
With default 𝑠 = 0.005, each watermarked subgraph has 𝑐𝑒𝑖𝑙 (0.005 × 4590) = 23 nodes — there
are

(4590
23

)
= 6.1 × 1061 subgraphs of this size; with default 𝑇 = 4, there are

((459023)
4

)
= 5.8 × 10245

possible 𝑇-sized sets of candidate subgraphs. Therefore, even in our smallest dataset, finding the
uniquely-convincing set of watermarked subgraphs is an incredibly hard problem.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Watermarking metrics for varied number of watermarked subgraphs, 𝑇 .

Figure 5: Watermarking metrics for varied watermarked subgraph size, 𝑠.

Random Search: Figure 3 shows the probability (from Equation 13), for varied subgraph sizes 𝑠,
that 𝑗 nodes of a randomly-chosen subgraph overlap with any single watermarked subgraph. The
figure plots these values for 𝑗 = 1, 2, 3, 4, 5, or all 𝑛𝑠𝑢𝑏 watermarked subgraph nodes and our default
𝑇 = 4 watermarked subgraphs. For our default subgraph size of 𝑠 = 0.005 (or equivalently, 0.5%
of the training nodes), there is close to 0 probability that a randomly-selected subgraph will contain
3 or more nodes that overlap with a common watermarked subgraph. This demonstrates very low
probability that a randomly-selected subgraph will be similar to the actual watermarked subgraphs.

5.3 ABLATION STUDIES

In this section, we explore the role of (1) watermarked subgraph size and (2) the number of water-
marked subgraphs on the effectiveness, uniqueness, and robustness of the watermark.

Impact of the Number of Watermarked Subgraphs 𝑇: Figure 4 shows how the number of wa-
termarked subgraphs, 𝑇 , affects various watermark performance metrics. The results show that for
all datasets, larger 𝑇 increases watermark alignment and a lower 𝑝-value, although test accuracy
decreases slightly for Photo and PubMed datasets. Notably, our default of 𝑇 = 4 is associated with
a near-zero 𝑝-value in every scenario. Figure 10 in Appendix also shows the robustness results to
removal attacks against varied 𝑇 : we observe that the watermarking method resists pruning attacks
until test accuracy is affected, and fine-tuning attacks for at least 25 epochs for any dataset.

Impact of the Size of Watermarked Subgraphs 𝑠: Figure 5 shows the results with different sizes
𝑠 of the watermarked subgraphs. We observe similar trends as Figure 4: watermarking is generally
more effective, unique, and robust for larger values of 𝑠. Again, we observe a trade-off between
subgraph size and test accuracy, though this trend is slight. We note that for 𝑠 ≥ 0.003, our method
achieves near-zero 𝑝-values across all datasets, as well as increasing watermark alignment. Fig-
ure 11 in Appendix shows the robustness results: across all datasets, when 𝑠 > 0.005, our method is
robust against pruning attacks generally, and against fine-tuning attacks for at least 25 epochs.

6 CONCLUSION

In this paper, we introduce the first-known method for watermarking GNNs via their explanations.
This avoids common pitfalls of backdoor-based methods: our watermark is designed with a statis-
tical guarantee of unambiguity, and since it does not reside within the training data space, it is not
vulnerable to attacks on the data itself. We demonstrate the robustness of our method to removal
attacks, while also highlighting the statistical infeasibility of locating the watermarked subgraphs.
This presents a significant step forward in securing GNNs against intellectual property theft.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pp. 1615–1631, 2018.

Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain, Curtis Wigington, Varun Manjunatha,
John P Dickerson, and Tom Goldstein. Certified neural network watermarks with randomized
smoothing. In International Conference on Machine Learning, pp. 1450–1465. PMLR, 2022.

Huili Chen, Bita Darvish Rouhani, and Farinaz Koushanfar. Blackmarks: Blackbox multibit wa-
termarking for deep neural networks. ArXiv, abs/1904.00344, 2018. URL https://api.
semanticscholar.org/CorpusID:90260955.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng, Shouling Ji, Xingjun Ma,
Bo Li, and Dawn Song. Copy, right? a testing framework for copyright protection of deep
learning models. In 2022 IEEE symposium on security and privacy (SP), pp. 824–841. IEEE,
2022.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end water-
marking framework for ownership protection of deep neural networks. In Proceedings of the
twenty-fourth international conference on architectural support for programming languages and
operating systems, pp. 485–497, 2019.

Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic ni-
tro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
medicinal chemistry, 34 2:786–97, 1991. URL https://api.semanticscholar.org/
CorpusID:19990980.

Asghar Ghasemi and Saleh Zahediasl. Normality tests for statistical analysis: A guide for non-
statisticians. International Journal of Endocrinology and Metabolism, 10:486 – 489, 2012. URL
https://api.semanticscholar.org/CorpusID:264609266.

Jianping Gou, Baosheng Yu, Stephen Maybank, and Dacheng Tao. Knowledge distillation: A sur-
vey, 06 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2018. URL https://arxiv.org/abs/1706.02216.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970. ISSN 00401706.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local inter-
pretable model explanations for graph neural networks. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6968–6972, 2023. doi: 10.1109/TKDE.2022.3187455.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017. URL https://arxiv.org/abs/1609.02907.

Mohammed Lansari, Reda Bellafqira, Katarzyna Kapusta, Vincent Thouvenot, Olivier Bettan, and
Gouenou Coatrieux. When federated learning meets watermarking: A comprehensive overview
of techniques for intellectual property protection. Machine Learning and Knowledge Extraction,
5(4):1382–1406, 2023.

Erwan Le Merrer, Patrick Pérez, and Gilles Trédan. Adversarial frontier stitching for remote neural
network watermarking. Neural Computing and Applications, 32(13):9233–9244, July 2019. doi:
10.1007/s00521-019-04434-z. URL https://hal.science/hal-02264449.

Bowen Li, Lixin Fan, Hanlin Gu, Jie Li, and Qiang Yang. Fedipr: Ownership verification for
federated deep neural network models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4521–4536, 2022.

11

https://api.semanticscholar.org/CorpusID:90260955
https://api.semanticscholar.org/CorpusID:90260955
https://api.semanticscholar.org/CorpusID:19990980
https://api.semanticscholar.org/CorpusID:19990980
https://api.semanticscholar.org/CorpusID:264609266
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1609.02907
https://hal.science/hal-02264449

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Garvin Li. Alibaba cloud machine learning platform for ai: Financial risk control experi-
ment with graph algorithms, 2019. URL https://www.alibabacloud.com/blog/
alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%
control-experiment-with-graph-algorithms_594518.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. CoRR, abs/1608.08710, 2016. URL http://arxiv.org/abs/1608.
08710.

Hanwen Liu, Zhenyu Weng, and Yuesheng Zhu. Watermarking deep neural networks with greedy
residuals. In Marina Meila and Tong Zhang 0001 (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 6978–6988. PMLR, 2021a. URL http://
proceedings.mlr.press/v139/liu21x.html.

Jian Liu, Rui Zhang, Sebastian Szyller, Kui Ren, and N. Asokan. False claims against
model ownership resolution. In 33rd USENIX Security Symposium (USENIX Security
24), pp. 6885–6902, Philadelphia, PA, August 2024. USENIX Association. ISBN 978-1-
939133-44-1. URL https://www.usenix.org/conference/usenixsecurity24/
presentation/liu-jian.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: a gnn-based imbalanced learning approach for fraud detection. In Proceedings of the
web conference 2021, pp. 3168–3177, 2021b.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Hualong Ma, Yue Zhao, and Yingjiu
Li. A robustness-assured white-box watermark in neural networks. IEEE Transactions on De-
pendable and Secure Computing, 2023.

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based rec-
ommendations on styles and substitutes. CoRR, abs/1506.04757, 2015. URL http://arxiv.
org/abs/1506.04757.

MetaAI. The ai behind unconnected content recommendations on face-
book and instagram, 2023. URL https://ai.meta.com/blog/
ai-unconnected-content-recommendations-facebook-instagram/.

Luis Perez Oliver Lange. Traffic prediction with advanced graph neural net-
works, 2020. URL https://deepmind.google/discover/blog/
traffic-prediction-with-advanced-graph-neural-networks/.

Sinno Pan and Qiang Yang. A survey on transfer learning. Knowledge and Data Engineering, IEEE
Transactions on, 22:1345 – 1359, 11 2010. doi: 10.1109/TKDE.2009.191.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/
abs/1912.01703.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE TNN, 2008.

Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum. On the ro-
bustness of backdoor-based watermarking in deep neural networks. In Proceedings of the 2021
ACM workshop on information hiding and multimedia security, pp. 177–188, 2021.

12

https://www.alibabacloud.com/blog/alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%control-experiment-with-graph-algorithms_594518
https://www.alibabacloud.com/blog/alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%control-experiment-with-graph-algorithms_594518
https://www.alibabacloud.com/blog/alibaba-cloud-machine-learning-platform-for-ai-financial-risk-%control-experiment-with-graph-algorithms_594518
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
http://proceedings.mlr.press/v139/liu21x.html
http://proceedings.mlr.press/v139/liu21x.html
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-jian
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-jian
http://arxiv.org/abs/1506.04757
http://arxiv.org/abs/1506.04757
https://ai.meta.com/blog/ai-unconnected-content-recommendations-facebook-instagram/
https://ai.meta.com/blog/ai-unconnected-content-recommendations-facebook-instagram/
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuo Shao, Wenyuan Yang, Hanlin Gu, Zhan Qin, Lixin Fan, Qiang Yang, and Kui Ren. Fedtracker:
Furnishing ownership verification and traceability for federated learning model. arXiv preprint
arXiv:2211.07160, 2022.

Shuo Shao, Yiming Li, Hongwei Yao, Yiling He, Zhan Qin, and Kui Ren. Explanation as a wa-
termark: Towards harmless and multi-bit model ownership verification via watermarking feature
attribution, 2024. URL https://arxiv.org/abs/2405.04825.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation, 2019. URL https://arxiv.org/abs/1811.05868.

Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. Model stealing attacks against inductive graph
neural networks, 05 2022.

Jan Pfeifer Sibon Li, Bryan Perozzi, and Douglas Yarrington. Introducing tensorflow
graph neural networks, 2021. URL https://blog.tensorflow.org/2021/11/
introducing-tensorflow-gnn.html.

Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning attacks. In
Neural Information Processing Systems, 2017. URL https://api.semanticscholar.
org/CorpusID:35426171.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N. Asokan. Dawn: Dynamic adversarial
watermarking of neural networks. In Proceedings of the 29th ACM International Conference on
Multimedia, MM ’21, pp. 4417–4425, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450386517. doi: 10.1145/3474085.3475591. URL https://doi.
org/10.1145/3474085.3475591.

Buse GA Tekgul, Yuxi Xia, Samuel Marchal, and N Asokan. Waffle: Watermarking in federated
learning. In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pp.
310–320. IEEE, 2021.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. CoRR, abs/1701.04082, 2017. URL http://arxiv.org/abs/
1701.04082.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Srinivas Virinchi. Using graph neural networks to recommend re-
lated products, 2022. URL https://www.amazon.science/blog/
using-graph-neural-networks-to-recommend-related-products.

Asim Waheed, Vasisht Duddu, and N Asokan. Grove: Ownership verification of graph neural
networks using embeddings. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 2460–
2477. IEEE, 2024.

Binghui Wang and Neil Zhenqiang Gong. Attacking graph-based classification via manipulating
the graph structure. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2023–2040, 2019.

Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and Yuwei Yao. Watermarking in deep neural
networks via error back-propagation. Electronic Imaging, 2020:22–1, 01 2020. doi: 10.2352/
ISSN.2470-1173.2020.4.MWSF-022.

Siyue Wang, Xiao Wang, Pin-Yu Chen, Pu Zhao, and Xue Lin. High-robustness, low-transferability
fingerprinting of neural networks. arXiv preprint arXiv:2105.07078, 2021.

Tianhao Wang and Florian Kerschbaum. Riga: Covert and robust white-box watermarking of
deep neural networks. Proceedings of the Web Conference 2021, 2020. URL https://api.
semanticscholar.org/CorpusID:225062005.

13

https://arxiv.org/abs/2405.04825
https://arxiv.org/abs/1811.05868
https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html
https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html
https://api.semanticscholar.org/CorpusID:35426171
https://api.semanticscholar.org/CorpusID:35426171
https://doi.org/10.1145/3474085.3475591
https://doi.org/10.1145/3474085.3475591
http://arxiv.org/abs/1701.04082
http://arxiv.org/abs/1701.04082
https://arxiv.org/abs/1710.10903
https://www.amazon.science/blog/using-graph-neural-networks-to-recommend-related-products
https://www.amazon.science/blog/using-graph-neural-networks-to-recommend-related-products
https://api.semanticscholar.org/CorpusID:225062005
https://api.semanticscholar.org/CorpusID:225062005

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/wu19e.html.

Jing Xu, Stefanos Koffas, Oğuzhan Ersoy, and Stjepan Picek. Watermarking graph neural networks
based on backdoor attacks. In 2023 IEEE 8th European Symposium on Security and Privacy
(EuroS&P), pp. 1179–1197. IEEE, 2023.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi Sugiyama. High-
dimensional feature selection by feature-wise kernelized lasso. Neural Computation, 26:185–207,
2012. URL https://api.semanticscholar.org/CorpusID:2742785.

Yifan Yan, Xudong Pan, Mi Zhang, and Min Yang. Rethinking {White-Box} watermarks on
deep learning models under neural structural obfuscation. In 32nd USENIX Security Symposium
(USENIX Security 23), pp. 2347–2364, 2023.

Hongxia Yang. Aligraph: A comprehensive graph neural network platform. In ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 3165–3166, 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings, 2016. URL https://arxiv.org/abs/1603.08861.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Gener-
ating explanations for graph neural networks. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 2019.

Hengtong Zhang, T. Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li, and Kui Ren. Data
poisoning attack against knowledge graph embedding. In International Joint Conference on
Artificial Intelligence, 2019. URL https://api.semanticscholar.org/CorpusID:
195345427.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. Proceedings
of the 2018 on Asia Conference on Computer and Communications Security, 2018. URL https:
//api.semanticscholar.org/CorpusID:44085059.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their cur-
rent applications in bioinformatics. Frontiers in Genetics, 12, 2021. ISSN 1664-8021. doi:
10.3389/fgene.2021.690049. URL https://www.frontiersin.org/articles/10.
3389/fgene.2021.690049.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and appli-
cations. AI Open, 1:57–81, 2020. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.
2021.01.001. URL https://www.sciencedirect.com/science/article/pii/
S2666651021000012.

Yuchen Zhou, Hongtao Huo, Zhiwen Hou, and Fanliang Bu. A deep graph convolutional neural
network architecture for graph classification. PLOS ONE, 18, 2023. URL https://api.
semanticscholar.org/CorpusID:257428249.

Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks
on graph neural networks: Perturbations and their patterns. ACM Trans. Knowl. Discov. Data, 14
(5), jun 2020. ISSN 1556-4681. URL https://doi.org/10.1145/3394520.

14

https://proceedings.mlr.press/v97/wu19e.html
https://api.semanticscholar.org/CorpusID:2742785
https://arxiv.org/abs/1603.08861
https://api.semanticscholar.org/CorpusID:195345427
https://api.semanticscholar.org/CorpusID:195345427
https://api.semanticscholar.org/CorpusID:44085059
https://api.semanticscholar.org/CorpusID:44085059
https://www.frontiersin.org/articles/10.3389/fgene.2021.690049
https://www.frontiersin.org/articles/10.3389/fgene.2021.690049
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://api.semanticscholar.org/CorpusID:257428249
https://api.semanticscholar.org/CorpusID:257428249
https://doi.org/10.1145/3394520

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

Algorithm 1: Watermark Embedding
Input: Graph 𝐺, training nodesV 𝑡𝑟 , learning rate 𝜂, #watermarked subgraphs 𝑇 , watermarked
subgraph size 𝑠, hyperparameter 𝑟 , target significance 𝛼𝑡𝑔𝑡 , watermark loss contribution bound 𝜖 .

Output: A trained and watermarked model, 𝑓 .
Setup: Initialize 𝑓 and optimizer. With 𝛼𝑡𝑔𝑡 , 𝑇 , and number of node features 𝐹 as input, compute
𝑀 using equation 11. Initialize w with values 1 and −1 uniform at random. With
𝑛𝑠𝑢𝑏 = 𝑐𝑒𝑖𝑙 (𝑠 × |V 𝑡𝑟 |), randomly sample 𝑇 sets of 𝑛𝑠𝑢𝑏 nodes fromV 𝑡𝑟 . These subgraphs jointly
comprise 𝐺𝑤𝑚𝑘 . Define node setV𝑐𝑙 𝑓 for classification from the remaining nodes inV 𝑡𝑟 .

for epoch=1 to #Epoch do
𝐿𝑐𝑙 𝑓 ← L𝐶𝐸 (y𝑐𝑙 𝑓 , 𝑓Θ (V𝑐𝑙 𝑓))
𝐿𝑤𝑚𝑘 ← 0
for i=1 to T do

P𝑤𝑚𝑘
𝑖
← 𝑓Θ (V𝑤𝑚𝑘

𝑖
)

e𝑤𝑚𝑘
𝑖
← 𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑤𝑚𝑘

𝑖 ,P𝑤𝑚𝑘
𝑖
)

𝐿𝑤𝑚𝑘 ← 𝐿𝑤𝑚𝑘 +∑𝑀
𝑗=1 max(0, 𝜖 − w[𝑗] · e𝑤𝑚𝑘

𝑖
[idx[𝑗]])

𝐿 ← 𝐿𝑐𝑙 𝑓 + 𝑟 · 𝐿𝑤𝑚𝑘

Θ← Θ − 𝜂 𝜕𝐿
𝜕Θ

A.1 EXPERIMENTAL SETUP DETAILS

Hardware and Software Specifications. All experiments were conducted on a MacBook Pro
(Model Identifier: MacBookPro18,3; Model Number: MKGR3LL/A) with an Apple M1 Pro chip (8
cores: 6 performance, 2 efficiency) and 16 GB of memory, on macOS Sonoma Version 14.5. Models
were implemented in Python with the PyTorch framework.

Dataset Details. Amazon Photo (simply “Photo” in this paper) is a subset of the Amazon co-
purchase network (McAuley et al., 2015). Nodes are products, edges connect items often purchased
together, node features are bag-of-words product reviews, and class labels are product categories.
Photo has 7,650 nodes, 238,163 edges, 745 node features, and 8 classes. The CoAuthor CS dataset
(“CS” in this paper) (Shchur et al., 2019) is a graph whose nodes are authors, edges are coauthorship,
node features are keywords, and class labels are the most active fields of study by those authors. CS
has 18,333 nodes, 163,788 edges, 6,805 node features, and 15 classes. Lastly, PubMed (Yang et al.,
2016) is a citation network whose nodes are documents, edges are citation links, node features are
TF-IDF weighted word vectors based on the abstracts of the papers, and class labels are research
fields. The graph has 19,717 nodes, 88,648 edges, 500 features, and 3 classes.

Hyperparameter Setting Details.

Classification training hyperparameters:

• Learning rate: 0.001-0.001
• Number of layers: 3
• Hidden Dimensions: 256-512
• Epochs: 100-300

Watermarking hyperparameters:

• Target significance level, 𝛼𝑡𝑔𝑡 : set to 1e-5 to ensure a watermark size that is sufficiently large.
• Verification significance level, 𝛼𝑣: set to 0.01 to limit false verifications to under 1% likelihood.
• Watermark loss coefficient, 𝑟: set to values between 20-100, depending on the amount required to

bring 𝐿𝑤𝑚𝑘 to a similar scale as 𝐿𝑐𝑙 𝑓 to ensure balanced learning.
• Watermark loss parameter 𝜖 : set to values ranging from 0.01 to 0.1. Smaller values ensure that no

watermarked node feature index has undue influence on watermark loss.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2: Ownership Verification
Input: A GNN 𝑓 trained by Alg. 1, a graph 𝐺 with training nodesV 𝑡𝑟 , a collection of 𝑇 candidate
subgraphs with node size 𝑛𝑠𝑢𝑏, and a significance level 𝛼𝑣 required for verification, 𝐼 iterations.
Output: Ownership verdict.

Phase 1 – Obtain distribution of naturally-occurring matches

Setup:
1. Define subgraphs S = {𝐺𝑟𝑎𝑛𝑑

1 , · · · , 𝐺𝑟𝑎𝑛𝑑
𝐷
}, where each subgraph is size

𝑛𝑠𝑢𝑏 = 𝑐𝑒𝑖𝑙 (𝑠 × |V 𝑡𝑟 |). Each subgraph 𝐺𝑟𝑎𝑛𝑑
𝑖

is defined by randomly selecting 𝑛𝑠𝑢𝑏
nodes fromV 𝑡𝑟 . 𝐷 should be “sufficiently large” (𝐷 > 100) to approximate a population.

2. Using Equation 6, collect binarized explanations, ê𝑟𝑎𝑛𝑑𝑖 , for 1 ≤ 𝑖 ≤ 𝐷.
3. Initialize empty list, 𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠 = {}.

for i=1 to I simulations do
Randomly select 𝑇 distinct indices 𝑖𝑑𝑥1, . . . , 𝑖𝑑𝑥𝑇 from the range {1, · · · , 𝐷}.
For each 𝑖𝑑𝑥𝑖 , letV𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
and X𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
be the nodes of 𝐺𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
and their features, respectively.

Compute ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥𝑖
= 𝑠𝑖𝑔𝑛(𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
, 𝑓 (V𝑟𝑎𝑛𝑑

𝑖𝑑𝑥𝑖
)) for each 𝑖 in 1 ≤ 𝑖 ≤ 𝑇 .

Compute the MI on {ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥1
, · · · , ê𝑟𝑎𝑛𝑑𝑖𝑑𝑥𝑇

} using Equation 7, and append to 𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠.

Compute 𝜇𝑛𝑎𝑡𝑒 =
Σ𝐼
𝑖=1𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠[𝑖]

𝐼
and 𝜎𝑛𝑎𝑡𝑒 =

√︃
1
𝐼
Σ𝐼
𝑖=1 (𝑚𝑎𝑡𝑐ℎ𝐶𝑜𝑢𝑛𝑡𝑠[𝑖] − 𝜇𝑛𝑎𝑡𝑒)2.

Phase 2 – Significance testing

Consider the null hypothesis, 𝐻0, that the observed MI across 𝑇 binarized explanations in {ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1
comes from the population of naturally-occurring matches. We conduct a 𝑧-test to test 𝐻0:

1. For 1 ≤ 𝑖 ≤ 𝑇 , let P𝑐𝑑𝑡
𝑖

= 𝑓 (V𝑐𝑑𝑡
𝑖
) and X𝑐𝑑𝑡

𝑖 be the corresponding features ofV𝑐𝑑𝑡
𝑖

.

2. Let the binarized explanation of the 𝑖𝑡ℎ candidate subgraph be defined as:

ê𝑐𝑑𝑡𝑖 = 𝑠𝑖𝑔𝑛

(
𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X𝑐𝑑𝑡

𝑖 ,P𝑐𝑑𝑡
𝑖)

)
3. Compute MI𝑐𝑑𝑡 across tensors in {ê𝑐𝑑𝑡𝑖 }𝑇𝑖=1 using Equation 14.
4. Compute the significance of this value as the p-value of a one-tailed 𝑧-test:

𝑧𝑡𝑒𝑠𝑡 =
MI𝑐𝑑𝑡 − 𝜇𝑛𝑎𝑡𝑒

𝜎𝑛𝑎𝑡𝑒

𝑝𝑧𝑡𝑒𝑠𝑡 = 1 −Φ(𝑧𝑡𝑒𝑠𝑡),

Where Φ (𝑧𝑡𝑒𝑠𝑡) is the cumulative distribution function of the standard normal distribution.
5. If 𝑝𝑧𝑡𝑒𝑠𝑡 ≥ 𝛼𝑣 , the candidate subgraphs do not provide adequate ownership evidence. If

𝑝𝑧𝑡𝑒𝑠𝑡 < 𝛼𝑣 , the candidate subgraphs provide enough evidence of ownership to reject 𝐻0.

A.2 GAUSSIAN KERNEL MATRICES

Define K̄ as a collection of matrices {K̄(1) , . . . , K̄(𝐹) }, where K̄(𝑘) (size 𝑁 × 𝑁) is the centered
and normalized version of Gaussian kernel matrix K(𝑘) , and each element K(𝑘)𝑢𝑣 is the output of the
Gaussian kernel function on the 𝑘 𝑡ℎ node feature for nodes 𝑢 and 𝑣:

K̄(𝑘) = HK(𝑘)H/∥HK(𝑘)H∥𝐹 , H = I𝑁 −
1

𝑁
1𝑁1𝑇𝑁 , K(𝑘)𝑢𝑣 = exp

(
− 1

2𝜎2
𝑥

(
x(𝑘)𝑢 − x(𝑘)𝑣

)2)
(15)

∥ · ∥𝐹 is the Frobenius norm, H is a centering matrix (where I𝑁 is an 𝑁 ×𝑁 identity matrix and 1𝑁 is
an all-one vector of length 𝑁), and 𝜎𝑥 is Gaussian kernel width. Now take the nodes’ softmax scores
P = [p1, · · · , p𝑁], and their Guassian kernel width, 𝜎p. Define L̄ as a centered and normalized 𝑁×𝑁

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Gaussian kernel L, where L𝑢𝑣 is the similarity between nodes 𝑢 and 𝑣’s softmax outputs:

L̄ = HLH/∥HLH∥𝐹 , L𝑢𝑣 = exp

(
− 1

2𝜎2
p

∥p𝑢 − p𝑣 ∥22

)
(16)

Let K̃ be the 𝑁2 × 𝐹 matrix [vec(K̄(1)), . . . , vec(K̄(𝐹))], where vec(·) converts each 𝑁 × 𝑁 matrix
K̄(𝑘) into a 𝑁2-dimensional column vector. Similarly, we denote L̃ = vec(L̄) as the 𝑁2-dimensional,
vector form of the matrix L̄. Also take 𝐹 × 𝐹 identity matrix I𝐹 and regularization hyperparameter
𝜆.

A.3 TIME COMPLEXITY ANALYSIS

The training process involves optimizing for node classification and embedding the watermark. To
obtain total complexity, we therefore need to consider two processes: forward passes with the GNN,
and explaining the watermarked subgraphs.

GNN Forward Pass Complexity. The complexity of standard node classification in GNNs comes
from two main processes: message passing across edges (𝑂 (𝐸𝐹), where 𝐸 is number of edges and
𝐹 is number of node features), and weight multiplication for feature transformation (𝑂 (𝑁𝐹2), where
𝑁 is number of nodes). For 𝐿 layers, the time complexity of a forward pass is therefore:

𝑂 (𝐿 (𝐸𝐹 + 𝑁𝐹2))

Explanation Complexity. Consider the Formula 3 for computing the explanation: e =

𝑒𝑥𝑝𝑙𝑎𝑖𝑛(X,P) = (K̃𝑇 K̃ + 𝜆I𝐹)−1K̃𝑇 L̃. Remember that K̃ is an 𝑁2 × 𝐹 matrix, 𝐼𝐹 is a 𝐹 × 𝐹

matrix, and L̃ is a 𝑁2 × 1 vector. To compute the complexity of this computation, we need the
complexity of each subsequent order of operations:

1. Multiplying K̃𝑇 K̃ (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝐹 × 𝐹 matrix)
2. Obtaining and adding 𝜆I𝐹 (an 𝑂 (𝐹2) operation, resulting in an 𝐹 × 𝐹 matrix)
3. Inverting the result (an 𝑂 (𝐹3) operation, resulting in an 𝐹 × 𝐹 matrix)

4. Multiplying by K̃𝑇
(an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝐹 × 𝑁2 matrix)

5. Multiplying the result by L̃ (an 𝑂 (𝐹2𝑁2) operation, resulting in an 𝑁2 × 1 vector)

The total complexity of a single explanation is therefore 𝑂 (𝐹2𝑁2) +𝑂 (𝐹2) +𝑂 (𝐹3) +𝑂 (𝐹2𝑁2) +
𝑂 (𝐹2𝑁2) = 𝑂 (𝐹2𝑁2 + 𝐹3). For obtaining explanations of 𝑇 subgraphs during a given epoch of
watermark embedding, the complexity is therefore:

𝑂 (𝑇 (𝐹2𝑁2 + 𝐹3))

Total Complexity. The total time complexity over 𝑖 epochs is therefore:

𝑂

(
𝑖 ×

(
𝐿 (𝐸𝐹 + 𝑁𝐹2) + 𝑇 (𝐹2𝑁2 + 𝐹3)

))
A.4 NORMALITY OF MATCHING INDICES DISTRIBUTION

Our results rely on the 𝑧-test to demonstrate the significance of the 𝑀𝐼 metric. To confirm that this
test is appropriate, we need to demonstrate that the 𝑀𝐼 values follow a normal distribution. Table 2
shows the results of applying the Shapiro-Wilk Ghasemi & Zahediasl (2012) normality test to 𝑀𝐼

distributions obtained under different GNN architectures and datasets. The results show 𝑝-values
significantly above 0.1, indicating we cannot reject the null hypothesis of normality.

A.5 ADDITIONAL RESULTS

Fine-tuning and pruning under more GNN architectures. The main paper mainly show results
on GraphSAGE (Hamilton et al., 2018). Here, we also explore GCN Kipf & Welling (2017) and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Dataset SAGE SGC GCN
Photo 0.324 0.256 0.345
CS 0.249 0.240 0.205
PubMed 0.249 0.227 0.265

Table 2: Shapiro-Wilk Test p-values

Number of Subgraphs (𝑇)

2 3 4 5

Dataset GNN
Acc

(Trn/Tst)
Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Acc
(Trn/Tst)

Wmk
Align

MI
𝑝-val

Photo
GCN 92.5/89.7 73.0 0.087 91.5/88.9 86.1 <0.001 90.9/88.3 91.4 <0.001 90.6/88.2 95.2 <0.001
SGC 92.0/89.4 73.8 0.111 91.0/88.7 82.5 <0.001 90.1/88.0 91.8 <0.001 89.7/87.4 99.4 <0.001
SAGE 95.4/88.9 77.4 0.002 94.4/87.5 90.9 <0.001 94.1/88.2 97.7 <0.001 93.9/87.2 99.4 <0.001

PubMed
GCN 87.0/83.7 75.4 0.003 85.9/82.1 86.6 <0.001 85.7/81.4 91.5 <0.001 85.6/81.4 90.2 <0.001
SGC 86.7/83.1 79.7 <0.001 85.8/81.6 83.8 <0.001 85.3/81.4 88.9 <0.001 84.6/80.0 92.9 <0.001
SAGE 91.9/82.8 76.8 0.009 91.3/81.8 81.0 <0.001 91.1/81.2 85.2 <0.001 90.1/79.6 91.5 <0.001

CS
GCN 97.1/90.3 56.8 0.562 96.8/89.9 67.5 <0.001 96.8/89.8 73.8 <0.001 96.9/90.0 78.9 <0.001
SGC 97.2/90.3 57.1 0.003 96.8/89.9 67.7 <0.001 96.7/90.1 74.5 <0.001 96.6/89.8 77.8 <0.001
SAGE 99.9/90.2 61.5 0.233 99.9/89.4 73.3 <0.001 99.9/88.9 78.2 <0.001 99.9/88.3 84.0 <0.001

Table 3: Watermarking results for varied 𝑇 . Each value averages 5 trials with distinct random seeds.

Figure 6: Pruning GCN models. Figure 7: Pruning SGC Models.

Figure 8: Fine-tuned GCN models. Figure 9: Fine-tuned SGC models.

SGC (Wu et al., 2019). Figure 6-Figure 9 shows the impact of fine-tuning and pruning attacks
results on our watermarking method under these two architectures. Watermarked GCN and SGC
models fared well against fine-tuning attacks for the Photo and CS datasets, but less so for PubMed;
meanwhile, these models were robust against pruning attacks for Pubmed and CS datasets, but not
Photo. Since the owner can assess performance against these removal attacks prior to deploying
their model, they can simply a matter of training each type as effectively as possible and choosing
the best option. In our case, GraphSAGE fared best for our three datasets, but GCN and SGC were
viable solutions in some cases.

More Results on Effectiveness and Uniqueness. Table 1 in the main paper shows the test accuracy,
watermark alignment, and MI 𝑝-values of our experiments with the default value of 𝑇 = 4. In Table
3, we additionally present the results for 𝑇 = 2, 𝑇 = 3, and 𝑇 = 5. The results show MI 𝑝-values
below 0.001 across all configurations when 𝑇 ≥ 3. They also show increasing watermark alignment

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Pruning and fine-tuning attacks against varied number of watermarked subgraphs (𝑇)

Figure 11: Pruning and fine-tuning attacks against varied sizes of watermarked subgraphs (𝑠)

with increasing 𝑇 , however, with a slight trade-off in classification accuracy: when increasing from
𝑇 = 2 to𝑇 = 5, watermark alignment increases, but train and test classification accuracy decreases by
an average of 1.44% and 2.13%, respectively; despite this, both train and test classification accuracy
are generally high across all datasets and models.

Fine-Tuning and Pruning under varied watermark sizes. Figures 10 and 11 show the robustness
of our methods to fine-tuning and pruning removal attacks when 𝑇 and 𝑠 are varied. We observe
that, for 𝑇 ≥ 4 and 𝑠 ≥ 0.005 — our default values — pruning only affects MI 𝑝-value after
classification accuracy has already been affected; at this point the pruning attack would be detected
by model owners regardless. Similarly, across all datasets, for 𝑇 ≥ 4 and 𝑠 ≥ 0.005, our method
demonstrates robustness against the fine-tuning attack for at least 25 epochs.

Fine-Tuning under varied learning rates. Our main fine-tuning results (see Figure 2) scale the
learning rate to 0.1 times its original training value. Figure 12 additionally shows results for learning
rates scaled to 1× and 10× the original training rates. The results for scaling the learning rate
by 1× show that larger learning rates quickly remove the watermark. However, these figures also
demonstrate that, by the time training accuracy on the fine-tuning dataset has reached an acceptable
level of accuracy, the accuracy on the original training set drops significantly, which diminishes the
usefulness of the fine-tuned model on the original task. For larger rates (10×), the watermark is
removed almost immediately, but the learning trends and overall utility of the model are so unstable
that the model is rendered useless. Given this new information, our default choice to fine-tune at
0.1× the original learning rate is the most reasonable scenario to consider.

A.6 FUTURE DIRECTIONS.

Extension to Other Graph Learning Tasks.

While we have primarily provided results for the node-classification case, we believe much of our
logic can be extended to other graph learning tasks, including edge classification and graph clas-
sification. Our method embeds the watermark into explanations of predictions on various graph
features. Specifically, for node predictions, we obtain feature attribution vectors for the 𝑛 × 𝐹 node
feature matrices of 𝑇 target subgraphs, with a loss function that penalizes deviations from the water-
mark. This process can be adapted to edge and graph classification tasks as long as we can derive 𝑇
separate 𝑛 × 𝐹 feature matrices, where 𝑛 represents the number of samples per group and 𝐹 corre-
sponds to the number of features for the given data structure (e.g., node, edge, or graph). Below, we
outline how this extension applies to different classification tasks:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 12: Fine-tuning results at increased learning rates (SAGE architecture).

1. Node Classification: The dataset is a single graph. Subgraphs are formed by randomly
selecting 𝑛 = 𝑠 · |V 𝑡𝑟 | nodes from the training set (where |V 𝑡𝑟 | is the number of training
nodes and 𝑠 is a proportion of that size). (Note: in this case, 𝑛 is equal to the value 𝑛𝑠𝑢𝑏
referenced previously in the paper.) For each subgraph:

• The 𝑛 × 𝐹 node feature matrix represents the input features (𝐹 is the number of node
features).

• The 𝑛 × 1 prediction vector contains one label per node.
• These inputs are used in a ridge regression problem to produce a feature attribution

vector for the subgraph.
• With 𝑇 subgraphs, we generate 𝑇 explanations.

2. Edge Classification: Again, the dataset is a single graph. Subgraphs are formed by ran-
domly selecting 𝑛 = 𝑠 · |E𝑡𝑟 | edges. For each subgraph:

• The 𝑛 × 𝐹 edge feature matrix represents the input features (𝐹 is the number of edge
features).

• The 𝑛 × 1 prediction vector contains one label per edge.
• These inputs are used in a ridge regression problem to produce a feature attribution

vector for the subgraph.
• As with node classification, we generate 𝑇 explanations for 𝑇 subgraphs.

3. Graph Classification: For graph-level predictions, the dataset D𝑡𝑟 is a collection of
graphs. We extend the above pattern to 𝑇 collections of 𝑛 = 𝑠 · |D𝑡𝑟 | subgraphs, where
each subgraph is drawn from a different graph in the training set. Specifically:

• Each subgraph in a collection is summarized by a feature vector of length 𝐹 (e.g., by
averaging its node or edge features).

• For a collection of 𝑛 subgraphs, we construct:
– An 𝑛 × 𝐹 subgraph feature matrix, where each row corresponds to a subgraph in

the collection.
– An 𝑛 × 1 prediction vector, containing one prediction per subgraph.

• These inputs are used in a ridge regression problem to produce a feature attribution
vector for the collection.

• With 𝑇 collections of 𝑛 subgraphs, we produce 𝑇 explanations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

By consistently framing each task as 𝑇 groups of 𝑛 × 𝐹 data points, our method provides a unified
approach while adapting 𝐹 to the specific task requirements.

Table 4 shows sample results from applying the above framework to graph classification. These
results are obtained using MUTAG, a 2-class dataset consisting of 188 chemical compounds that are
labeled according to their mutagenic effects Debnath et al. (1991). We used the SAGE architecture
with 3 layers. Each subgraph consists of 10 nodes, and each subgraph collection consists of 5
subgraphs. Each 1 × 𝐹 subgraph feature vector is obtained by averaging their node feature matrices
over rows.

The results show that the MI 𝑝-value consistently remains below 0.05 for 4, 5, and 6 subgraph
collections, demonstrating our method’s effectiveness and beyond the node classification domain.

Subgraph Collections
4 5 6

p-value 0.039 0.037 <0.001
Acc (train/test) 0.915/0.900 0.954/0.929 0.915/0.893

Table 4: Watermarking results: graph classification

Enhancing Robustness.

An important future direction is to safeguard our method against model extraction attacks Shen
et al. (2022), which threaten to steal a model’s functionality without preserving the watermark. One
form of model extraction attack is knowledge distillation attack Gou et al. (2020).

Knowledge distillation has two models: the original “teacher” model, and an untrained “student”
model. During each epoch, the student model is trained on two objectives: (1) correctly classify
the provided input, and (2) mimic the teacher model by mapping inputs to the teachers’ predic-
tions. The student therefore learns to map inputs to the teacher’s “soft label” outputs (probability
distributions) alongside the original hard labels; this guided learning process leverages the richer
information in the teacher’s soft label outputs, which capture nuanced relationships between classes
that hard labels cannot provide. By focusing on these relationships, the student model can generalize
more efficiently and achieve comparable performance to the teacher with a smaller model and fewer
parameters, thus reducing complexity.

We find that in the absence of a strategically-designed defense, the knowledge distillation attack
successfully removes our watermark (𝑝 > 0.05). This is unsurprising, since model distillation maps
inputs to outputs but ignores mechanisms that lead to auxiliary tasks like watermarking.

To counter this, we outline a defense framework that would incorporate watermark robustness to
knowledge distillation directly into the training process. Specifically, during training and watermark
embedding, an additional loss term would penalize reductions in watermark performance. At peri-
odic intervals (e.g., after every x epochs), the current model would be distilled into a new model,
and the watermark performance on this distilled model would be evaluated. If the watermark per-
formance (measured by the number of matching indices) on the distilled model is lower than the
watermark performance on the main model, a penalty would be added to the loss term. This would
ensure that the trained model retains robust watermarking capabilities even against knowledge dis-
tillation attacks.

21

	Introduction
	Related Work
	Background and Problem Formulation
	GNNs for Node Classification
	GNN Explanation
	Problem Formulation

	Methodology
	Watermark Embedding
	Ownership Verification
	Watermark Design
	Locating the Watermarked Subgraphs

	Experiments
	Setup
	Results
	Effectiveness and Uniqueness
	Robustness
	Undetectability

	Ablation Studies

	Conclusion
	Appendix
	Experimental Setup Details
	Gaussian Kernel Matrices
	Time Complexity Analysis
	Normality of Matching Indices Distribution
	Additional Results
	Future Directions.

